
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Science

Bachelor’s thesis

Cache inteligence

Petr Jordán

Supervisor: Ing. Martin Rehák, Ph.D.

26th May 2017

Acknowledgements

I would like to thank Jára Boyko and Martin Pospíšil for support during
writing this thesis. Also Petr Poliak for language support.

Author statement for
undergraduate thesis

I declare that the presented work was developed independently and that I have
listed all sources of information used within accordance with the methodical
instructions for observing the ethical principles in the preparation of university
theses.

In Prague on 26th May 2017 …………………

Czech Technical University in Prague
Faculty of Electrical Engineering
© 2017 Petr Jordán. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Electrical Engineering. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Jordán, Petr. Cache inteligence. Bachelor’s thesis. Czech Technical University
in Prague, Faculty of Electrical Engineering, 2017.

Abstrakt

Tato práce je zaměřena na analýzu, návrh a implementaci řešení cache serveru
pro ukládání dat ze služby Virus Total s ohledem na možnosti dalšího rozšíření
pro další analytické služby. Tato analýza řeší vhodný výběr technologií na
základě jejich použitelnosti a výkonu. Implementace si klade za cíl použít
vybrané technologie a splnit uživatelské požadavky, které byly v průběhu práce
definovány.

Klíčová slova Internetová bezpečnost, Cache služby, VirusTotal

Abstract

This thesis is focused on the analysis, design and implementation of a cache
server to store the results of the Virus Total service. The work emphasises
on the extensibility of the solution for possible future additions of different
analytical tools. The analysis considers the selection of technologies that will
be used based on the maturity, usability and real-world performance. The
implementation part solves the problem regarding the user defined requirements
using the technologies with respect to the analysis outcome.

ix

Keywords Security intelligence, Cache service, VirusTotal

x

Contents

Citation of this thesis . viii

1 Introduction 1
1.1 Motivation and goal of the thesis 1

2 Analysis 3
2.1 Analysis tools . 3

2.1.1 Virus Total . 3
2.1.2 Threat Grid . 3

2.2 Target customer . 4
2.3 Research group requirements 4

2.3.1 Requirements . 4
Acceptance criteria 4

2.3.2 Use cases . 5
2.3.3 Domain model . 6

2.4 Cache performance . 7
2.4.1 Testing data . 8
2.4.2 MySQL . 8
2.4.3 PostgreSQL . 8
2.4.4 Memcached and Redis 8
2.4.5 MongoDB . 8
2.4.6 Result . 9

2.5 Programming language and frameworks 9
2.5.1 PHP and Nette . 10
2.5.2 Scala and Play . 10
2.5.3 Java and Spring Boot 10
2.5.4 Result . 10

3 Proposed architecture and design 11
3.1 Application design . 11

xi

3.2 Virtual hardware . 12
3.2.1 Physical server . 12
3.2.2 Apache Tomcat . 13
3.2.3 Apache HTTPD . 13
3.2.4 CentOS 7 . 13

3.3 Puppet configuration . 14
3.4 RPM . 14
3.5 Spring Boot . 14
3.6 Database . 15
3.7 Client-server communication . 16

3.7.1 Protocols . 17

4 Implementation 19
4.1 Third party libraries . 19
4.2 Gathering data from Virus Total 19

4.2.1 VirusTotal client . 20
4.2.2 Scheduling implementation 20
4.2.3 Downloading strategy 20

4.3 MongoDB . 21
4.3.1 Spring Data MongoDB 21

4.4 Configuration . 22
Configuration files 22

4.5 Tests . 23
4.5.1 Static analysis . 23
4.5.2 Unit tests . 23
4.5.3 API documentation from tests 23

5 Pilot testing 25
5.1 Application test . 25

5.1.1 MapR . 25
5.1.2 REST-API . 26

5.2 Performance summarization . 26

6 Conclusion 27

Bibliography 29

A Content of the included CD 33

xii

List of Figures

2.1 Activity diagram describing request for scanning resources 5
2.2 Activity diagram describing request for report cached resources . . 6
2.3 Activity diagram describing request for report cached resources . . 7
2.4 Cache performance . 9

3.1 Cache performance . 12
3.2 Third party cache server . 15

4.1 The example of entity . 22
4.2 The example of query . 22

5.1 Daily data export example . 25

xiii

Chapter 1
Introduction

Today’s risks for malware1 infection have become a daily threat. An average
of malware attacks is 200,000 per day. And that’s only the malware samples
detected by one of the bigger companies. This is statistic from 2016 and the
predictions for the following years say that the number of attacks will grow.
Malware continues to grow and evolves to bypass antiviruses and other levels
of protection[1].

Current trend in malware detection is machine learning. The number of
the security companies that mentioned machine learning at 2011 is 5-10 out
of 300-500. However since then the situation has changed dramatically. From
more than 1500 security companies over 1000 of them is talking mostly about
machine learning [2]. Nevertheless machine learning can not be successful
without the labeled data.

Information about malware can be obtained from the analysis tools. Analysis
tools such as Cisco’s ThreatGrid and VirusTotal provide solid malware detection.
Also it is important data source for Artificial intelligence development[5]. Data
from Virus Total can improve accuracy of detection algorithms. However
business limitations (requests limit) make work harder and slower.

This thesis is focused on storing information about files and URLs, which
can be used in future analysis. Data are required by many groups so the
solution tries to respect every group for future extension. Also this thesis
tries to find and implement the best technological solution based on specific
use-cases. It should provide service for storing and accessing Virus Total data.

1.1 Motivation and goal of the thesis
The motivation of this thesis is to create a tool for accessing remote sources
with local cache ability. This tool will help to simplify and speed up the work
with third party analysis services for research group in Cisco.

1urlhttps://en.wikipedia.org/wiki/Malware

1

1. Introduction

Based on use-cases prioritization the goal of this thesis is to design and
create REST-API service for storing results from Virus Total. The goal is to
try out the most suited technologies and use them in final solution.

The implementation will use Spring Boot framework that provides REST-API
and MongoDB for storing data. The main modules from Spring Boot are Web,
Data MongoDB and testing tools. Database part requires good document
design for optional performance. Finally the security requirements must be
met.

2

Chapter 2
Analysis

This chapter introduces analysis tools, specific user requirements, caching
systems analysis and technological choices. User requirements were not exactly
specified so it describes requirements gathering and their prioritization process.
Cache analysis is mainly about finding a solution with the best performance
based on user requirements. Last part of analysis deals with programming
language and framework choice.

2.1 Analysis tools
In this chapter there are described tools for facilitating detection of viruses,
worms, trojans, and all kinds of malware. The first one is Virus Total. It
mainly provides scanning results for antiviruses. The second one is Threat
Grid. It is Cisco’s system which provides analyses itself.

2.1.1 Virus Total
Virus Total stores results from antiviruses. It allows users scan file, URL,
IP-addresses or domain name and getting the result. The results contains
the last scanning result but we can always send new scan request. There are
also important comments on sources from community users which are another
sources of feedback. This results help user in decision if given source is malware
or not.

2.1.2 Threat Grid
AMP Threat Grid combines static and dynamic malware analysis with threat
intelligence into one unified solution. You get timely, in-depth information you
need to protect your business from malware of all types. It integrates real-time
behavioral analysis and up-to-the-minute threat intelligence feeds with existing
security technologies, protecting you from both known and unknown attacks.[6]

3

2. Analysis

2.2 Target customer
My thesis is designed for two groups of Cisco employees - researchers and data
analysts. Researchers mainly provide robust solutions for malware detection
based on artificial intelligence. One of the sources for their solutions are data
from third party services such as VirusTotal, ThreatGrid, etc. So they would
like service which holds the third parties data. Second group analyzes captured
malware and evaluates its correctness or finding non cached malware. Analysts
also research new forms of cyber-attacks. They mainly use third party services
as information source for their classification decision. Based on discussion of
both teams there is a conclusion. Analysis does not need the service itself but
they need its implementation to Domain Buster Tool - internal Cisco tool for
domain name and IP address analysis. Another reason why the caching is not
a prioritize here is the number of requests. It consumes barely hundreds of
request per day. However the solution service must respect requirement for
future integration. On the other hand researchers work with large amount of
data - hundreds of thousands. Thus the research group is the target customer.

2.3 Research group requirements
The whole CTA team2 have only a single private API key, but multiple people
in research are using it with overlapping queries. The volume of requests that
we make every day is limited, sometimes this limit is exceeded and sometimes
the limit is not fully used. A common cache would be beneficial to save
API access quotas, network bandwidth and time to get the data from the
VirusTotal cloud to server located in Prague.
Typical bulk request has around 200k Hashes, i.e. around 6.4MB
The typical size of a VirusTotal-response is 5kB, i.e. total size is around 1GB

2.3.1 Requirements
Request to fetch list of URL, domains or hashes (labeled as resources) from a
laptop once per week. Get status from the laptop once per day. Consume the
intelligence from a REST server or from a MapR-FS3.

Acceptance criteria
1. Fetch request can be issued via REST (service)

a) Implement endpoints for scanning of URL, Domain and file
b) Limit the size of resources in request

2. Status of requests can be obtained via REST
2http://www.cisco.com/c/en/us/products/security/cognitive-threat-

analytics/index.html
3https://mapr.com/

4

http://www.cisco.com/c/en/us/products/security/cognitive-threat-analytics/index.html
http://www.cisco.com/c/en/us/products/security/cognitive-threat-analytics/index.html
https://mapr.com/

2.3. Research group requirements

a) Implement endpoints for reading of URL, Domain and file
b) Add the parameter to URL, which specify if record is cached

3. Intelligence can be consumed via REST
4. Time-range request parameter
5. All intelligence is exported on file system
6. Immediate / Postponed request parameter
7. All cached resources are exported on file system

a) Implement daily scheduler for exporting resources

2.3.2 Use cases
There are two main use cases - scan and report resources(domains, URL and
files). Both of them require Basic Authentication. Scan (2.1) and report (2.2)
are described in activity diagrams shown below.

Figure 2.1: Activity diagram describing request for scanning resources

The first diagram describes user’s request for a resources scan. Server
authorizes request and saves non cached or expired resources for later scheduling.

5

2. Analysis

Figure 2.2: Activity diagram describing request for report cached resources

The second diagram describes user’s request for getting resources from a
server. Server provides filtering options - date range of scanned records and
only cached resources. Beside this user can check status of requested requests
by using filtration.

2.3.3 Domain model

The model is not complicated as you can see at (2.3). The service does not
need to take care of the security itself as it will be protected by firewall and
other Cisco’s internal systems and/or workflows so users are not required.
Everything what the application needs is just hold the scan request and
their requests at VirusTotalRequest. Other properties mainly for behaviour of
scheduling are also part of VirusTotalRequest - scheduling itself is explained4.2.2.
The model satisfies all caching requirements.

6

2.4. Cache performance

Figure 2.3: Activity diagram describing request for report cached resources

2.4 Cache performance

One of the main tasks is to choose cache service that offers the best performance.
The choice of technology depends on two factors - read/write performance
for our use-cases and its business limitations - storage size limit and failure
resistance. There are three approaches considered in this thesis - SQL databases,
NoSQL databases and in memory databases.

The first thing that has to be explained is that NoSQL does not supersede
SQL or in memory databases. Every above mentioned technology can be used
in special use-cases where it exceeds other technologies regarding performance.
There does not exist a technology with the best performance for all use-cases.
It always depends on specific use case[3].

SQL is used for managing relational databases and provides various operations
on the data in the database. SQL database can provide very useful functionality
like transactions, indexing or foreign keys. In general SQL databases are one
of the most common choices for projects with many relations and transaction
processing like enterprise applications or banking systems.

NoSQL databases are document-oriented. That means the data is stored
in a document for instance article holds all related records in a single document
such as author information, pictures, article content and tags. That property
provides much better performance for CRUD operations. However the cost
for better performance is absence of the transactions, relations and some other
functionality provided by SQL databases.

In-memory database is a database which stores data in system memory.
The volatile provides much faster data operations but the cost for it is data
persistence. There are many SQL, NoSQL or key-value in-memory databases
but there is still the same problem with persistence. However Redis provides
simple synchronization tool to file system, but this synchronization has always
delay. It better than nothing, but some records can be lost on shutdown.

7

2. Analysis

2.4.1 Testing data
In order to achieve the most suited cache technology for our system we had
to simulate its performance on sample data. All the storages performance are
tested with PHP scripts. PHP is chosen based on its easy running on linux
machine with PHP and easy integration with mentioned storages. Measured
values are the time of writing PHP associative array with sample data and
read this data with their conversion to associative array. The size of data is
50 000 records cause of use-cases. The results are depicted on graph(2.4).

2.4.2 MySQL
MySQL is a Well known open-source and one of the most used databases[4].
One of the main factor is its usage in LAMP stack. It is a combination of four
technologies - Linux, Apache, MySQL and PHP. MySQL provides many types
of storage engines which handle the SQL operations for different table types.
In general InnoDB is the most used because of its support for foreign keys.
Nevertheless for our use case the MyISAM is a better choice. It has better
performance for read/write operations but it does not support some functions
like transactions and foreign keys.

2.4.3 PostgreSQL
PostgreSQL is a another SQL database also open-source and more advanced
than MySQL. There is wide support of data types, transactions and many
new tools like JSONB - json stored in binary representation. It is designed
for handling large number of tasks very efficiently. Also there is support
for storing procedures which can reduce communication between application
and database. Thanks to these procedures can be saved some computing
time. That makes PostgreSQL really useful for large applications. On the
other hand these functions are a trade-off for some performance which makes
PostgresSQL slower than MySQL on average.

2.4.4 Memcached and Redis
Memcached and Redis achieve very close results to each other regarding performance.
It surpasses SQL and NoSQL databases in speed but it is not well suited for
our use-cases because of persistence. Nevertheless it is good for comparison.

2.4.5 MongoDB
MongoDB is the most popular NoSQL database. It is document-oriented
database with BSON(binary json) documents in dynamic schemas. It is
also open-source with good documentation. As other document databases
MongoDB is always a good choice for large amount of data. In general

8

2.5. Programming language and frameworks

user have to well design the structure of NoSQL documents. Thanks to this
mongoDB has better performance than PostgresSQL and MySQL. Detailed
description is in 3.6.

Figure 2.4: Cache performance

2.4.6 Result
Based on the results from the measurements the fastest database is the in-memory
Memcached. That is not a big surprise but it can not be used 2.4.4. As
expected NoSQL surpassed SQL. That means MongoDB is chosen for this
thesis.

2.5 Programming language and frameworks
The language choice affects the whole project. Good general knowledge of
the language is needed if you want to use some of its framework. It we want
to speak about good framework it is always required to have really good
documentation. In this chapter is explained selection of the most appropriate
framework. There are three options of languages and their frameworks: PHP
Nette framework, Scala Play framework and the last one Java with Spring
Boot.

9

2. Analysis

There are also other frameworks such as Django, Ruby on Rails, etc.
However we have to respect Cisco’s business limitations such as runtime
environments and frameworks.

2.5.1 PHP and Nette
PHP is a well known scripting language used mainly for web development. The
reason why I wanted Nette is because of my experience and thus my very good
knowledge of this framework. It is open source and quite good documented
MVC framework. It is easy to configure and run on Apache HTTPD. Also
Nette solves many PHP security problems. Nette handle all use-cases well. It
can provide REST service and there is easy integration for MongoDB.

2.5.2 Scala and Play
Scala is a modern object-oriented yet functional language which is very popular
thanks to the possibility of using Java libraries. Play framework provides two
options for language - Java and Scala. It provides really good documentation
for both languages and many source code examples. There is good support
for REST service and also support for MongoDB.

2.5.3 Java and Spring Boot
Java is reliable and mature object-oriented language. It provides huge number
of libraries which make development easier. Spring Boot is derived from Spring
framework. User can choose only needed modules from Spring like REST,
JPA, Security, etc… It can make Spring Boot really suited for small application
or enterprise application. Modules mentioned above provide support for REST
and MongoDB.

2.5.4 Result
Spring Boot is finally selected framework. There is not big advantage over
Nette and Play. All mentioned frameworks support required technologies and
their performance is negligible for our use-cases. As main reasons for picking
the Spring Book are great documentation with many examples and possibility
of advice from CTA.

10

Chapter 3
Proposed architecture and

design

This chapter explains in detail the architecture of the project. The parameters
of the physical server and used web servers. The next part describes configuration
through Puppet technology. It is followed by packaging section. Next section
is dedicated to selected technologies - MongoDB and Spring Boot. The last
section describes in details communication.

3.1 Application design

The whole application is built using the Spring Boot which runs on embedded
Tomcat server. Spring Boot is MVC oriented framework. Model layer ensures
communication with MongoDB. Controller layer provides REST-API access
and view layer displays request data. The last part is internal scheduling for
fetching queued data. Application receives requests through Apache HTTPD
server only which solves security and resending request to Apache Tomcat.
The architecture is visualized on the following figure.

11

3. Proposed architecture and design

Figure 3.1: Cache performance

3.2 Virtual hardware
This chapter describes selected physical server and web servers in detail.
The physical server(Intel machine) chapter describes its performance that
matches user requirements. The web server chapter describes a very popular
Apache HTTPD web server and built-in Apache Tomcat server for running
applications.

Specific configuration and installed software for servers is fully managed by
Puppets: Puppet configuration. At first creating GNU/Linux users and enable
their connection via ssh keys. The next step is to create a specific folders,
installing packages owned by specific users, ensure logging, setup services,
setup firewall, cron and backup. There is only necessary configuration for
ensuring security and connection. Other running application on Intel machine
has own puppet configuration.

3.2.1 Physical server
The server is very powerful machine(3 virtual CPU (3 one-core Intel(R) Xeon(R)
CPU E7- 4860 @ 2.27GHz), 32GB RAM, 50GB system + 12TB data (80% is

12

3.2. Virtual hardware

used)) with many cores, big RAM and many CPUs and it hosts many analytic
tools. As mentioned in 2.3 requirements for MongoDB memory usages are big
1GB per bunch of requests and same size for exposing data to MapR-FS. Also
the processing of bigger requests have to be quick enough. Finally the location
of server is Prague. It reduces cache server response time because main data
consumers are in Cisco Prague office.

3.2.2 Apache Tomcat

Spring Boot provides two options for embedded servers - Tomcat and Jetty.
Where embedding means user does not have to deploy application to standalone
server. There is not a significant performance difference between the two
options. Request processing is nearly the same, configuration is easier in
Spring Boot via configuration file and Java code. The final decision is to
use Tomcat. In short, Tomcat is an open-source reference implementation
of the Java Servlet, JavaServer Pages, Java Expression Language and Java
WebSocket technologies. We use default configuration 4, which is ready to
run. It is important to mention that a direct connection to this server is not
allowed. Instead we use Apache HTTPD server as a SSL proxy and Basic
Authorizaton server.

3.2.3 Apache HTTPD

Apache25 is an open-source web server. It runs on many different platforms
from *nix family systems to Microsoft Windows. Our server is configured by
Puppets - running as standard Apache HTTPD service. Listening only on
port 443 to force secure connection over HTTPS. Apache server also requires
authorization by LDAP where credentials are CEC - Cisco’s username and
password. LDAP and HTTPS are described in 3.7 in more detail.

3.2.4 CentOS 7

The used OS is CentOS 76 with systemd, which provides a system and service
manage. It is important to mention the used OS, because the selected technologies
such as Puppet and RPM require OS support. Also the implemented REST
server will run as service in systemd.

4https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
5https://httpd.apache.org/
6https://www.centos.org/

13

https://httpd.apache.org/
https://www.centos.org/

3. Proposed architecture and design

3.3 Puppet configuration
Puppet7 is a powerful tool designed to manage the configuration of Unix-like
and Microsoft Windows systems in a declarative way. That makes puppet
platform independent tool for confinguration. User can setup system resources
such as package dependencies, user creation, file system modifications, create
service etc. This configuration is described in the manifest folder and its .pp
files. In the pp files a custom declarative language is used. Here is a simple
Puppet language example 3.2. The main reason why to use Puppet is holding
the whole server configuration in files which provide easy system upgrades and
simplifies the releasing. Also there is the possibility of code reusing.

An alternative for puppets are for example bash scripts with configuration.
But this way of configuration is usually very system specific and thus the
reusability is low. Puppet provides a layer of abstraction which provides
ability to configure resources on different platforms. User does not have to
use specific commands or dependencies. A good example would be a package
installation with package command. There is no required prior knowledge of
the platform for package install like Ubuntu apt-get or CentosOS yum.

3.4 RPM
As mentioned before we used CentosOS, that means we could use RPM. RPM
Package Manager is a package management system. This tool takes care of
packaging the software from source into a distributable packages as well as
standard package maintenance such as install, update and remove selected
package. In RPM specification you can create GNU/linux users and required
folders for application run. There is also the possibility to get additional
information about the package like its description, version, repository, and
other… Finally RPM solves package dependencies. Our application is packaged
by RPM and uploaded to Prague Cisco repository and this repository is added
to the server configuration.

3.5 Spring Boot
In the analysis part 2.5.3 there are mentioned basic facts about Spring Boot
and the completion of application requirements. In this chapter there are
described some topics in more detail. Spring Boot (SB) is presented as
a framework with easy configuration that you can run just like that. You
can select only needed modules and third-party libraries so there is minimal
unnecessary dependencies.

By default SB creates stand-alone Spring application packaged with the
embedded server. This means that you can run your packaged application(.jar

7https://puppet.com/

14

https://puppet.com/

3.6. Database

class vtcacheconfig {
require infrarepoconfig
require javaconfig
require intelconfig

File {
ensure => directory,
mode => '0755',
owner => 'tpcache',
group => 'tpcache'

}

package { 'third-party-cache-server': ensure => latest }
->
file { [

'/data/feeds/third-party-cache',
'/var/log/third-party-cache']:

}
~>
service { 'third-party-cache-server': enable => true }

}

Figure 3.2: Third party cache server

or .war) through java -jar command. There are also many production-ready
features such as metrics, health checks and externalized configuration 4.4.
Finally SB left all of the Spring XML configuration and replaced it by Java
configuration classes.

3.6 Database

As mentioned in 2.4.5 the chosen NoSQL 2.4 database is MongoDB. The
company’s MongoDB service is used by many applications so there are some
specific security workflows. There is created specific user for every application.
Our user has been given a readWrite role and virustTotal database access. It
provides read and write operations to database. Authentication is always
against admin database. Admin database is special MongodDB database,
which stores all users and their roles.

15

3. Proposed architecture and design

3.7 Client-server communication
As it is mentioned above, communication between server and client is done
only by a REST-API. There are two types of request GET and POST. GET
request is used to read data, with specific URL format and parameters returning
desired data. The POST request is used to create new data, because this
method has body not like GET. Also the POST request requires specific URL
and optional parameters. The other HTTP methods are not used and HTTP
405 error is returned. The documentation for request is generated from test.

Communication flow is indicated in 2.3.2. Detailed example of scanning
new domain immediately is described below.

1. At the begging the user sends POST request from his client(curl, Java,
etc.). Where the URL of request is of the form:

https://secret-url.com/domain/scan?immediate=true

As you can see in URL path there is keyword domain and scan, which specifies
the action. Parameters after the question mark are optional and they provide
extended functionality. Finally server requires HTTP Base Authentication
where credentials are encoded in header.

[{"resource":"029.com"}]

Request body

2. The API accepts and processes the request. Fist possible result is that
the request is valid and response is HTTP 204 code, which means the request
for scanning the domain is created. There is an optional parameter immediate
requesting that the scan is done immediately. The second possibility is that
the request is deemed invalid and HTTP 404 is returned.

[
{
"id": "591d6da5356f1180ef4a1ce2",
"createTimestamp": 1495100837176,
"finishTimestamp": 1495100837638,
"vtData": {

"response_code": 0,
"verbose_msg": "Domain not found"

},
"status": "MISSING_IN_VIRUS_TOTAL",
"resource": "x29.com",
"type": "DOMAIN",
"topPriority": false

16

3.7. Client-server communication

}
]

OK response example

{
"timestamp": 1495100924924,
"status": 404,
"error": "Not Found",
"message": "Not Found",
"path": "/domain/sca"

}

Invalid request response example

3. The last step is the client parsing the response.

3.7.1 Protocols
The application uses three protocols. HTTP for communication between
Apache HTTPD (proxy) and Apache Tomcat Server. HTTPS is used by
Apache HTTPD for communication with outside world. Last one is LDAP
protocol used for Cisco authorization.

Hyper Text Transfer Protocol(HTTP[7]) is a protocol for exchanging hypertext
documents. It is a stateless request-response protocol.

HTTPS is the secure version of HTTP.
LDAP (Lightweight Directory Access Protocol) is protocol for accessing

and maintaining distributed directory information. In our case LDAP provides
access to Cisco’s users credentials.

Schema of used protocols is in 3.1;

17

Chapter 4
Implementation

In this chapter is described the implementation of the server side application.
There described used libraries and important implementations. Also this
chapter shows how is the code tested.

4.1 Third party libraries

All library dependencies are managed by Apache Maven. Maven is application
manager for Java projects described by XML in a so called pom.xml file. There
are many spring modules(REST, MongoDB, WEB), which provide REST
controller layer and communication with MongoDB. The second part are
modules for testing purpose - Mockmvc, WEB, Actuator. Detaily described
in unit testing chapter.

The second groups of libraries starts with unirest - HTTP client for Virust
Total API implementation. For easy testing this API here is a Wiremock. To
reduce Java boilerplate code(code with little or no alteration) we are using
Lombok8. Lombok replace boilerplate code by annotations. Another big
library is Apache commons IO for simplifying file operations. Finally the last
library is the Embedded MongoDB as the name suggests you do not need
MongoDB on physical server for testing purpose.

4.2 Gathering data from Virus Total

The first problem to be solved is obtaining the data from VT. We try to find
existing library that enables us to work with VT. Based on VT API limitations
we have to solve how to daily download data and do not exceed limit.

8https://projectlombok.org/

19

https://projectlombok.org/

4. Implementation

4.2.1 VirusTotal client
VT provides three Java community implemented libraries to interact with
the public API. But any of these three libraries does not fully satisfy our
requirements. Library from Mauricio Correa9 supports only file scans/reads,
library from Kanishka Dilshan10 does not support domain scan, it isn’t well
documented and library from VIGHNESWAR RAO BOJJA11 could not be
build.

We created own client, which is fully covered by tests. This client is able
to report URL, file or domain and scan these sources. As mentioned before all
these methods are tested against WireMock12 - tool for mocking target URL
to return certain data.

4.2.2 Scheduling implementation
In order to fulfill the requirements we needed to implement automatic downloading
of the results from VirusTotal. Two options were considered - either the
application itself takes care of scheduling the tasks for downloading the results
with some internal cron-like functionality or the application would rely on
some (external) scheduler that would invoke the fetch via REST endpoints
(for example regular cron job that would ping the corresponding endpoints).
We decided to go with the first option because of Spring’s native support for
such case using the @Scheduled annotation on corresponding services.

4.2.3 Downloading strategy
Another important task is downloading the data from VT while not exceeding
limit as mentioned in 2.3. We needed to come up with a strategy/architecture
that is resilient to system failure and respects the daily limit of the service.

First iteration was to use a simple counter that was refreshed at the end
of each day. Before each request to VirusTotal a record about the action was
created while also checking if the limit hasn’t been already met. The counter
was strictly respecting the limit but the downfall was that it was not resilient
to failure. This was caused by the inability of MongoDB to use transactions.
Two problems were imminent - concurrent request wouldn’t be able to know
about each other thus possibly overcoming the limit, secondly if the request
wasn’t successful the counter has already been incremented. So there were
problems with both upper and lower bound of the counter.

In second iteration we chose to use more straightforward approach. Before
each request we would query MongoDB to get the total request count that
have already been completed. After completing a request we create a record.

9https://www.xlabs.com.br/java-virustotalapi/
10http://kdkanishka.github.io/Virustotal-Public-API-V2.0-Client/
11https://vighnesh.me/virustotal/
12http://wiremock.org/

20

https://www.xlabs.com.br/java-virustotalapi/
http://kdkanishka.github.io/Virustotal-Public-API-V2.0-Client/
https://vighnesh.me/virustotal/
http://wiremock.org/

4.3. MongoDB

As there is a small possibility that more concurent requests might be handled
in the same moment we decided to lower the internal application limit (based
on an estimated number of requests) to compensate for that. This solution also
do not have to care about server restart, because counter is always counted.

4.3 MongoDB

As mentioned in analysis 2.5.3 Spring Boot provides integration for MongoDB.
In this chapter we explain the creation of collections by MongoDB’s entity.
Also there is described querying to MongoDB by MongoRepository interface,
which provides simple querying.

4.3.1 Spring Data MongoDB

Spring allows you to create entity classes which represent objects in the database.
In comparison SQL entities such as Java hibernate entities, which could
contain many attributes - relations to another tables, id, column rules, etc…
Number of MongoDB entity(4.1) should contain all the related information
(thus violating the normal forms), so the number of the options are low13. We
mainly use only the @Id, which generates unique identifier.

The interface for creating simple queries is shown in 4.2. As you can see the
querying is implemented by a keyword and a value. There are many options
for keywords such as GreaterThan, Not, Within, etc. The full specification
is avaliabe online 14. Nevertheless this solution isn’t very friendly to code
refactoring, because when you change the name of a field the code stops
working. Also the method name could get really long, which makes code
hard to read.

Complicated queries can be implemented by Spring MongoDB query. This
approach is used when you can not use simple query for instance the saving
of new entity.

13http://docs.spring.io/spring-data/data-document/docs/current/reference/
html/#mapping-usage-annotations

14http://docs.spring.io/spring-data/mongodb/docs/current/reference/html/mongodb.repositories.queries

21

http://docs.spring.io/spring-data/data-document/docs/current/reference/html/##mapping-usage-annotations
http://docs.spring.io/spring-data/data-document/docs/current/reference/html/##mapping-usage-annotations

4. Implementation

public class Customer {

@Id
public String id;

public String firstName;
public String lastName;

public Customer() {}

public Customer(String firstName, String lastName) {
this.firstName = firstName;
this.lastName = lastName;

}

}

Figure 4.1: The example of entity

public interface CustomerRepository extends MongoRepository<Customer, String> {

public Customer findByFirstName(String firstName);
public List<Customer> findByLastName(String lastName);

}

Figure 4.2: The example of query

4.4 Configuration
As mentioned above custom Spring Boot configuration is implemented by
Java code and not by XML. The configuration solves creating new Beans and
connection to MongoDB. Spring Boot Bean defines and creates objects, which
are used for dependency injection (fields annotated as @Autowired).

Configuration files

• application.yml - Main configuration file, which holds a list of all properties
and references to the underlying classes that consume them.

• logback.xml - Configuration file, which describes logging level, specific
output folder and rollback policy.

22

4.5. Tests

It is important to mention that application.yml is not part of project,
because it is a security risk. Application.yml contains secret information and
is located in config folder, that means the secret data knows only the admin.

4.5 Tests
Why do we test code? The response is: we all make mistakes. This means
we always should write tests that validate the functionality of our code. In
this chapter we describe libraries used for testing and the process. By Cisco’s
development process this thesis requires minimally 80% of code coverage (Jacoco
framework15) and no static analysis errors.

4.5.1 Static analysis
Static analysis analyzes the code without executing it. It could find code
smell such as streams that aren’t closed or violation of best practices (such as
naming conventions etc.). Typical mistakes are lexical, syntactic or semantic.
This helps to maintain better code quality. We used open-source FindBugs16

library. By this analysis we reduced found bugs to zero.

4.5.2 Unit tests
Tests are implemented by JUnit17 framework, which allows you to write
repeatable tests. However in most tests we have to load/mock Spring Boot
environment, because we want to @Atowire objects, se we use @SpringBootTest
annotation. For tesing REST-API endpoints we used @AutoConfigureMockMvc.
This allow you create MockMvc object that mock endpoint.

Tests should be runnable in every environment. Nevertheless we are using
MongoDB, which is not part of every environment. This problem is solved by
Embedded MongoDB18 for tests only.

4.5.3 API documentation from tests
As mentioned in 4.5.2 the API is tested by MockMvc but this library allows
you to generate static .adoc files which describe given request. These generated
files can be transformed into easily readable documentation by the Asciidoctor
library. This documentation is always generated when you run tests. The
generated documentation is uploaded to maven site server by mvn site:deploy
command. Maven site:deploy deploys the generated content to the site URL
specified in the <distributionManagement>.

15http://www.eclemma.org/jacoco/
16http://findbugs.sourceforge.net/
17http://junit.org/junit4/
18https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo

23

http://www.eclemma.org/jacoco/
http://findbugs.sourceforge.net/
http://junit.org/junit4/
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo

Chapter 5
Pilot testing

This chapter talks about the testing of the finished service in the production
environment. It compares the results with the requirements at the start
of the work and briefly evaluates the performance. Further it explores the
bottlenecks and potential enhancements of the finished service.

5.1 Application test

In this part we evaluate the output of the service and the user experience.
Mainly we focus on the user interaction and usability. Unfortunately it is not
yet possible to do the final evaluation as the pilot phase will be ongoing for
20 days (beginning on 23.May 2017) to show the actual impact.

5.1.1 MapR

We have already mentioned in chapter 4.2 that the downloaded data are stored
on a persistent storage. You can find an example of such results in figure 5.1.
The files were thoroughly tested regarding format specification and that the
data stored corresponds to the actual results and none are missing. The check
revealed that in the future it would be very beneficial to also include the source
of the data (Virus Total, Thread Grid, etc.).

-rw-r--r--. 1 data mapr 205K May 12 23:55 cache_ 201705132.json
-rw-r--r--. 1 data mapr 0 May 13 23:55 cache_ 201705133.json
-rw-r--r--. 1 data mapr 0 May 14 23:55 cache_ 201705134.json
-rw-r--r--. 1 data mapr 0 May 15 23:55 cache_ 201705135.json

Figure 5.1: Daily data export example

25

5. Pilot testing

5.1.2 REST-API
During the REST-API testing it was confirmed that no unintentional behavior
occurs and few future user experience improvements were found. For example
the time based filtration could contain date instead of timestamp. Or the
option to bind a certain URL only with some specific resource to scan.

These comments were duly noted. However majority of the requests were
transferred to future development including any specifications.

5.2 Performance summarization
The application processes around 10000 request with an estimated total computational
run time of less than two hours. This estimate was the linearized time so after
accounting of the parallelization we can reduce the estimate close to one hour
including the communication with the database. Persisting the results on the
file system was so low that it is negligible considering the total time.

26

Chapter 6
Conclusion

At first we needed to gather the user requirements and exactly specify, what
is the desired result of this work. The analysis of requirements is described in
2.3. Based on these requirements we created an analysis of possible solutions
and the most suited technologies in 2. In this chapter we explored the interface
of common security intelligence, collected general approaches to caching data
and evaluated their performance. That means we satisfy the analysis goal.

The next part is architecture and design of this application. As mentioned
in goals, we should create a tool for accessing remote sources. However
this tool has to be part of Cisco’s infrastructure and this tool has its own
architecture. The tool integration to the Cisco’s infrastructure is described
in 3. We proposed robust design with easy extensibility, management and
reliable security.

In the end we implemented service which satisfies all the use-cases and
respects proposed architecture. Based on Cisco’s policy we respected Cisco’s
code management such as code testing and documentation. That means we
created a good piece of software

The service is already running (from 26th May 2017). However estimated
time for data downloading is around 20 days and downloading started on May.
22, 2017. This means that we can not present the results as of writing this
thesis but the expected impact for the research group is high.

As mention in 2.2 next step will be the integration to Domain Buster
tool. Also another future plan is to integrate other analysis tools such as
ThreadGrid.

27

Bibliography

[1] Gammons, B. (n.d.). 6 Must-Know Cybersecurity Statistics for 2017 |
Barkly Blog. Retrieved May 25, 2017, from <https://blog.barkly.com/
cyber-security-statistics-2017>

[2] Cybersecurity and AI - expert panel discussion. (n.d.). Retrieved
May 25, 2017, from <https://www.facebook.com/492692310885572/
videos/742776755877125/>

[3] SQL vs. NoSQL Databases: What’s the Difference?, <https:
//www.upwork.com/hiring/data/sql-vs-nosql-databases-whats-
the-difference>

[4] MySQL customers, <https://www.mysql.com/customers/>

[5] Gaurav Sood (2017). virustotal: R Client for the virustotal API. R package
version 0.2.1., <https://www.virustotal.com/>

[6] Threat Grid - Advanced Malware Protection. (2017, April 04). Retrieved
May 12, 2017, from <http://www.cisco.com/c/en/us/products/
security/threat-grid/index.html>

[7] HTTP - Hypertext Transfer Protocol. (n.d.). Retrieved May 18, 2017, from
<https://www.w3.org/Protocols/

29

 https://blog.barkly.com/cyber-security-statistics-2017
 https://blog.barkly.com/cyber-security-statistics-2017
https://www.facebook.com/492692310885572/videos/742776755877125/
https://www.facebook.com/492692310885572/videos/742776755877125/
https://www.upwork.com/hiring/data/sql-vs-nosql-databases-whats-the-difference
https://www.upwork.com/hiring/data/sql-vs-nosql-databases-whats-the-difference
https://www.upwork.com/hiring/data/sql-vs-nosql-databases-whats-the-difference
https://www.mysql.com/customers/
https://www.virustotal.com/
http://www.cisco.com/c/en/us/products/security/threat-grid/index.html
http://www.cisco.com/c/en/us/products/security/threat-grid/index.html
https://www.w3.org/Protocols/

Nomenclature

API Aplication Programming Interface

CRUD Create, Read, Update, Delete

CTA Cisco Cognitive Threat Analytics

HTTP Hypertext Transfer Protocol

HTTPD Apache Hypertext Transfer Protocol Server

HTTPS Hypertext Transfer Protocol Secure

JSON JavaScript Object Notation

MVC Model-view-controller

REST Representational state transfer

SQL Structured Query Language

VT VirusTotal

31

Appendix A
Content of the included CD

Thesis code is intellectual property of Cisco, so it can to be published.

dtbPerformance Databases performance scripts

text Thesis text

33

	Citation of this thesis
	Introduction
	Motivation and goal of the thesis

	Analysis
	Analysis tools
	Virus Total
	Threat Grid

	Target customer
	Research group requirements
	Requirements
	Acceptance criteria

	Use cases
	Domain model

	Cache performance
	Testing data
	MySQL
	PostgreSQL
	Memcached and Redis
	MongoDB
	Result

	Programming language and frameworks
	PHP and Nette
	Scala and Play
	Java and Spring Boot
	Result

	Proposed architecture and design
	Application design
	Virtual hardware
	Physical server
	Apache Tomcat
	Apache HTTPD
	CentOS 7

	Puppet configuration
	RPM
	Spring Boot
	Database
	Client-server communication
	Protocols

	Implementation
	Third party libraries
	Gathering data from Virus Total
	VirusTotal client
	Scheduling implementation
	Downloading strategy

	MongoDB
	Spring Data MongoDB

	Configuration
	Configuration files

	Tests
	Static analysis
	Unit tests
	API documentation from tests

	Pilot testing
	Application test
	MapR
	REST-API

	Performance summarization

	Conclusion
	Bibliography
	Content of the included CD

